Phytosulphokine gene regulation during maize (Zea mays L.) reproduction.

نویسندگان

  • René Lorbiecke
  • Melanie Steffens
  • Janina M Tomm
  • Stefan Scholten
  • Petra von Wiegen
  • Erhard Kranz
  • Udo Wienand
  • Margret Sauter
چکیده

The sulphated pentapeptide phytosulphokine (PSK) was identified as a substance that promotes cell division in low-density suspension cultures and has been implicated in various aspects of tissue differentiation in plants. The peptide is derived from PSK precursor proteins that are encoded by small gene families. The physiological roles of PSK are still not clearly defined and little is known about expression of members of the PSK precursor gene family in any plant species. In this study, highly regulated tissue and cell type-specific expression are described for four PSK genes from maize (Zea mays L.) in female and male gametophytes, and during seed development. ZmPSK1 and ZmPSK3 were specifically and differentially expressed in cells of female and male gametophytes and in female and male gametes. In anthers ZmPSK1 or ZmPSK3 transcripts were found, for example, at high levels in secretory tapetal cells which support developing microspores. ZmPSK1 mRNA was abundant in mature pollen including sperm cells. ZmPSK1 and ZmPSK3 transcripts were also detected in egg and central cells of the female gametophyte and ZmPSK1 mRNA was present in synergids, indicating that the PSK peptide probably plays a role during gametogenesis, pollen germination, and fertilization. In developing maize kernels all four ZmPSK genes were expressed, albeit with striking differences in their expression patterns. It is proposed here that PSK is required for numerous but defined processes during gametophyte and early sporophyte development. In general, PSK availability appears to be controlled through transcriptional regulation in a tissue and cell type-specific and development-dependent manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioinformatic and empirical analysis of a gene encoding serine/threonine protein kinase regulated in response to chemical and biological fertilizers in two maize (Zea mays L.) cultivars

Molecular structure of a gene, ZmSTPK1, encoding a serine/threonine protein kinase in maize was analyzed by bioinformatic tool and its expression pattern was studied under chemical biological fertilizers. Bioinformatic analysis cleared that ZmSTPK1 is located on chromosome 10, from position 141015332 to 141017582. The full genomic sequence of the gene is 2251 bp in length and includes 2 exons. ...

متن کامل

Agrobacterium Mediated Transformation of Maize (Zea mays L.)

Agrobacterium tumefaciens mediated transformation may offer a better alternative than the biolistic gun for genetic transformation of maize plants. This gene delivery system results in a greater proportion of stable, low-copy number transgenic events than does the biolistic gun, and is highly efficient. In the present work, we studied maize transformation using A. tumefaciens by identifying som...

متن کامل

Estimation of Combining Ability and Gene Effects in Forage Maize (Zea mays L.) Using Line × Tester Crosses

Abstract Determination of gene effects and combining abilities is a critical stage in maize hybrid breeding. In the present study, 20 S6 lines as female and three S6 inbred lines (K18, K19 and K1264/5-1) as tester were crossed and the resulting  test cross progenies were evaluated in a randomized complete block design with three replications in 2008. During the growing period, several agronomi...

متن کامل

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

Study of the Effect of 5-Azacytidine as a DNA Demethylating Agent on Agronomic Traits, Androgenesis Induction via Anther Culture and DNA-Methyltransferase Gene Expression in Maize (Zea mays L.) Leaf Tissue

Optimization of in vitro methods for the production of maize double haploids plays an important role in the breeding programs of this plant. In this study, the effects of 5-azacytidine on agronomic traits, androgenesis induction efficiency and also, DNA methyltransferase gene expression (AF229183.1) in two growth stages of maize were investigated. This experiment was performed as factorial base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 56 417  شماره 

صفحات  -

تاریخ انتشار 2005